

同位素分析的难点-质量歧视效应 质量歧视效应mass bias的解决办法: • 双稀释剂法Double spike (DS) • 元素加入法Element doping • 标准-样品交叉法Standard - Sample Bracketing technique (SSB)

同位素分析的难点 -质量歧视效应				
质量歧视效应mass bias的校正公式:				
SSB: r _{corr}	$= R_{std} \times \frac{r_{meas}}{\sqrt{(r_{std}^*)_1 \times (r_{std}^*)_2}}$	(1)		
Power law:	$\alpha = \left(\frac{R_{rrue}}{r_{meas}}\right)^{1/\Delta M} - 1$	(2)		
	$r_{corr} = r_{meas} (1 + \alpha)^{\Delta m}$	(3)		
Exponential law:	$\beta = Ln(R_{true} / r_{meas}) / Ln(M_i / M_k)$	(4)		
	$r_{corr} = r_{meas} \left(M_i / M_k \right)^{\beta}$	(5)		

Isotope	Abundance (%)	Mass	interference	Interference mass	۵M	R-M/aN
RCr*	9,5006	52.94065	140 Ar 13 CI*	52.96573	0.02508	2111
MCr*	2.3647	53,93888	[40 Ar 34 N]*	53.96545	0.02657	2030
"Fe'	5.84	53,93961	[40Ar 54N]*	53.96545	0.02584	2087
			S4Cr*	53.93888	0.00073	73890
			[40Ca 14N]*	53.96566	0.02605	2071
			[42 Ca 12 C]*	53,95862	0.01901	2837
			[27 AI 27 AI]*	53.96308	0.02347	2298
"Fe"	91.76	55,93494	[40Ar 160]*	55.95729	0.02235	2503
			[40Ca 160]*	55,95750	0.02256	2479
			[²⁸ Si ²⁸ Si]*	55,95386	0.01892	2956
"Fe'	2.12	56,93540	[40Ar 3501H]*	56,96512	0.02972	1916
			[40Ar 170]~	56.96151	0.02611	2181
"Fe'	0.25	57,93328	58 NI+	57.93535	0.00207	27987
			[40Ar 180]*	57,96154	0.02826	2050

标准样品 NIST玻璃(NIST 610, 612, 614) USGS玻璃(GSE-1G, GSD-1G, GSC-1G) USGS 玻璃(BCR-2G, BHVO-2G, BIR-1G) MPI-DING玻璃(SiO₂ = 45 - 75%) CGSG玻璃(SiO₂ = 53 - 64%) USGS碳酸盐(MACS-3, GP-4)、磷酸盐(MAPS-4, MAPS-5) 和硫化物压片(MASS-1) 共他玻璃(如Cpx、榍石、磷酸盐、BAM-S005-A and BAM-S005-B) 各实验室研制的标准样品

利用LA-ICP-MS分析地质样品要点

- 1. 分析前的准备工作
- 2. 选择合适的外标样品
- 3. 不同内标元素对分析结果的影响
- 4. 不同校正方案对分析结果的影响
- 5. 利用LA-ICP-MS分析主要地质样品

例 1: Cu同位素微区分析

Cu同位素简介	
✓ 2 stable isotope:	
63Cu 63.32% 63.37% 63.33%	
✓ Primary standard: NIST 976 (美国国家标准技术研究所、纯铜) ⁶⁵ Cu/ ⁶³ Cu=0.4456±0.0004 (Shields et al., 1964)	
✓ Other standard: IRMM, GSB Cu, NIST SRM 3114, NWU-CuA, NWU-CuB	
✓ 表达方式: $\delta^{65}Cu = \left(\begin{pmatrix} \left(\overset{(CC)}{\square C_{CC}} \right)_{isompter} \\ \left(\overset{(CC)}{\square C_{CC}} \right)_{isompter} \\ \overset{(CC)}{\square C_{CC}} \right)_{NSTUTO} - 1 \right) \times 1000$	
	44

Table 3 Sr, Nd, and Hf	CRMs	ESr/6Sr (±2SE)	145Nd/144Nd (±2SE)	143Nd/144Nd (±2SE)	176Hf/477Hf (±2SE)
be CMb using the bigh- processor PTF boots in which and MC-RP-MS 有效 数字 取舍	GSP-2	0.765076 (9)	0.348399 (4)	0.511377 (5)	0.281940 (6)
		0.765084 (9)	0.348398 (6)	0.511362 (5)	0.281948 (7)
		0.765097 (8)	0.348398 (6)	0.511377 (7)	0.281946 (6)
		0.765147 (7)	0.348394 (4)	0.511389 (5)	0.281950 (6)
		0.765108 (9)	0.348384 (6)	0.511358 (7)	0.281946 (6)
		0.765145 (12)	0.348396 (8)	0.511363 (10)	0.281954 (5)
	Mean (2SD)	0.765109 ± 61		0.511373 ± 25	0.281948 ± 9
	GSR-1	0.738310 (9)	0.348398 (6)	0.512228 (6)	0.282520 (8)
		0.738314 (9)	0.348403 (8)	0.512223 (5)	0.282514 (7)
		0.738352 (14)	0.348403 (6)	0.512230 (6)	0.282525 (6)
		0.738289 (13)	0.348397 (8)	0.512220 (6)	0.282524 (6)
		0.738370 (13)	0.348394 (8)	0.512215 (5)	0.282518 (7)
		0.738340 (14)	0.348400 (9)	0.512221 (6)	0.282528 (6)
	Mean (2SD)	0.738329 ± 60		0.512223 ± 11	0.282522 ± 10
	QLO-1	0.703889 (8)	0.348388 (8)	0.512853 (9)	0.283045 (6)
		0.703887 (9)	0.348386 (4)	0.512853 (9)	0.283044 (7)
		0.703889 (9)	0.348392 (6)	0.512854 (8)	0.283051 (6)
		0.703892 (7)	0.348388 (8)	0.512856 (9)	0.283045 (5)
		0.703901 (9)	0.348403 (8)	0.512842 (8)	0.283055 (6)
		0.703891 (8)	0.348404 (8)	0.512849 (7)	0.283058 (5)
	Mean (2SD)	0.703891 ± 10		0.512851 ± 10	0.283050 ± 12
	AGV-2	0.703985 (6)	0.348389 (4)	0.512775 (7)	0.282977 (6)
		0.704006 (5)	0.348393 (6)	0.512782 (6)	0.282967 (7)
		0.703983 (9)	0.348403 (6)	0.512782 (9)	0.282971 (8)
		0.703989 (7)	0.348410 (6)	0.512788 (7)	0.282966 (9)
		0.704012 (11)	0.348416 (6)	0.512802 (9)	0.282973 (7)
		0.703984 (6)	0.348413 (8)	0.512790 (9)	0.282973 (7)
	Mean (2SD)	0.703993 ± 25		0.512787 ± 18	0.282971 ± 8

